Gauss LimitedLinear Scheme (2. Order)

Using the Gauss LimitedLinear scheme introduces a limiter function to avoid nonphysical values, compare J.H. Ferziger and M. Perić. In the diagrams one can see that the values of the scalar Φ are in the range of the defined interval [0:1]. Due to some numerical errors it is possible to get values lower or higher than the defined one. The order of magnitude of the error is 10-e13 (in this example). Hence, one should always use limited schemes instead of using the Gauss Linear scheme directly. Especially if the mesh is not orthogonal.

 

Quantity solutions between the meshes

  • compare_limitedLinear_20x20
  • compare_limitedLinear_40x40
  • compare_limitedLinear_80x80

 

Quality and quantity solution of the structured mesh (0°)

  • limitedLinear_20x20
  • limitedLinear_40x40
  • limitedLinear_80x80
  • limitedLinear_research_2

 

Quality and quantity solution of the structured mesh (45°)

  • limitedLinear_20x20
  • limitedLinear_40x40
  • limitedLinear_80x80
  • limitedLinear_research_1

 

Quality and quantity solutions of the unstructured mesh

  • limitedLinear_20x20
  • limitedLinear_40x40
  • limitedLinear_80x80
  • limitedLinear_research_3

 

Quality and quantity solutions of the polygon mesh

  • limitedLinear_20x20
  • limitedLinear_40x40
  • limitedLinear_80x80
  • limitedLinear_research_4
Top